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Abstract. The superfluid phase transition of the  general vortex gas, in which the circulatims 
may be any non-zero integer, is studied. When the net circulation of the system is not zero 
the absence ofasuperfluid phase is shown. When the net circulation ofthevortices vanishes. 
the presence of off-diagonal long range order is demonstrated and the existence of an order 
parameter is proposed. The transition temperature for the general vortex gas is shown to 
be the Koaterlitz-Thouless temperature. An upper bound for the average vortex number 
density is established for the general vonex gas and an exact expression is derived for the 
Kosterlitz-Thouleas ensemble. 

1. Introduction 

In 1973 Kosterlitz and Thouless published the first of two papers [l, 21 describing a 
phase transition in two dimensions. Four years later Nelson and Kosterlitz [3] used 
this theory to predict the celebrated universal jump in the superfluid density of 4He 
films which was subsequently verified by Bishop and Reppy [4] in  their famous torsion 
pendulum experiment. The cornerstone of this theory is the presence of a neutral ‘gas’ 
of point vortices in the film which interact through a Coulombic Hamiltonian. A natural 
analogy is made with a two-dimensional gas of point charges and the phase transition 
is thought to be due to the binding and unbinding of dipole pairs. The high-temperature 
phase consists of free vortices each having a circulation or ‘charge’ 141 = 1 while the 
low-temperature phase consists of oppositely charged vortices bound in dipole pairs. 
It is thought that the presence of free vortices breaks any long range order in the 
system [SI and, from the Hohenberg-Mermin-Wagner (HMW) theorem [6,7], we know 
that the ‘He film will behave as a normal fluid. When the temperature is lowered below 
the transition temperature the gas of vortices condenses into dipole pairs and are no 
longer free. Long range order is thereby possible. Renormalization group techniques 
are then used to analyse the critical properties of the system and give an operational 
definition of the superfluid density. 

We shall analyse the phase transition in a different, somewhat more traditional 
way. Unlike Kosterlitz and Thouless we shall not begin by differentiating between 
‘free’ and ‘bound’ vortices but will instead treat them all on an equal footing. We shall 
apply an infinitesimally small external flow or  ‘electric’ field E, to the system which 
may be slowly varying in time. It will serve two purposes. First, it will polarize the 
system and, as it will be coupled linearly to the polarization vector P, = 2 q,r;, the 
grand partition function becomes a generating functional for correlation functions. 
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Second, noting that 4 is proportional to the total superfluid momentum density .&' in 
the film, by looking at the superfluid momentum-momentum correlation functions 
(gjrSr) we can make cootact with the standard two-fluid model in three dimensions. 
As usual, the normal density will be proportional to the trace of this matrix and will 
be required to be finite in the static limit E, + 0. The signature of a superfluid state 
will be when the off-diagonal terms of the matrix becomes infinite in this limit, signifying 
off-diagonal long range order. The coefficient of the off-diagonal terms will then serve 
as our order parameter. 

Our approach bares some resemblance to linear response theory. Traditional linear 
response theory as it is applied to a classical ensemble, however, requires a perturbative 
expansion in the time derivative of the polarization vector P, about a small applied 
field and then letting that field go to zero. For the vortex gas fhe polarization vector is 
a constanf of the motion and 4 vanishes identically. The perturbation procedure ends 
before it begins. Fortunately, enough information can be obtained from the grand 
partition function to demonstrate the presence of long range order as well as the 
existence of an order parameter without resorting to perturbation theory. Moreover, 
we find that we need not require that the vortex charges be only +1 and will instead 
begin by considering the more general system in which the charges may be any non-zero 
integer. Nor shall we require that the net charge Q of the system to be zero, although 
we will consider the cases Q # 0 and Q = 0 separately. Our fundamental premise is 
that a superfluid state does exist in two-dimensional 4He films, and that the Kosterlitz- 
Thouless-Nelson theory is the correct description of it. Our results will, however, 
require a re-interpretation of the transition itself. 

A few words about terminology and notation. By the general Kosterlitz-Thouless 
(KT) ensemble, or simply the general ensemble, we mean the ensemble in which the 
vortex circulation may take on any non-zero integer value. The thermodynamic average 
of an object 0 which is calculated using the grand partition function % [ ( E ( ]  for this 
ensemble will be denoted by (0) and is a function of the applied field E,. What will 
be of particular importance is the value it takes in the static limit E, + 0 which we will 
denote by the subscript zero: (0)". We may also calculate the thermodynamic average 
of 0 when E,=0  identically and this will be denoted by (0)IE,-". We shall find that 
for some 0, (0)IE,-o # (Qo. When we restrict our attention to the KT ensemble, in which 
all the vortices must have unit charge and the net charge of the system must vanish, 
we shall denote all thermodynamic quantities calculated using their grand partition 
function with the index KT. Greek indices will run from 1 to N, the number of vortices 
in the system, while Latin indices will run from 1 to 2, the dimension of the space. 
The summation convention will be used throughout this paper when Latin indices are 
repeated. It will not be used for Greek indices. 

The rest of this paper is organized in the following manner. Section 2 provides a 
brief review of vortex dynamics in  two dimensions and gives the motivation for our 
construction of the grand partition function. In section 3 we shall consider the case 
in which the net charge does not vanish and show that for this system there is no 
superfluid phase. The vortices will always behave as a normal fluid. In section 4 we 
shall consider the case when Q = 0 and demonstrate the existence of a superfluid phase 
transition at the KT temperature TK.. An order parameter for the system is proposed 
and its relationship with the average density of vortices is derived. All of this analysis 
is done away from the transition temperature and it is not until section 5 that the 
behaviour of the system at TKT will be addressed. Concluding remarks may be found 
in section 6 .  

A D Speliotopoulos and H L Morrison 
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2. Background 

We begin with a brief description of point vortices in Bose liquids. Let J, be the 
microscopic complex scalar field for the 4He atoms. The microscopic current density is 

where m is the mass of the 'He atom. We define the superfluid velocity as u"=p-'j 
[8] where p=1+12 is the two-dimensional density of the 'He film. uSf is, as usual, 
proportional to the gradient of the phase of I). As such, for any closed path y in the film, 

where h = 2ah. Because J, is a Bose field, q may be any integer. When q is non-zero, 
we say that there is a vortex with circulation q somewhere within y. 

At times we shall find it more convenient to work in complex coordinates. We 
define z = (xi + i x , ) / f i  with the corresponding definition uSf= (v;'-iu;')/fi. As usual, 
complex conjugates are denoted by a bar. If we now consider a vortex with circulation 
qm located at a position z y  in the film, (2) becomes the contour integral 

around any closed path y. in the complex plane encircling zoI. As such, the superfluid 
velocity for this single vortex is 

where U: is any holomorphic, or meromorphic function of z with poles of order greater 
than one. Since we are primarily interested in the first-order pole of U", we shall set 
UT = 0. We caution the reader that our definition of the superfluid velocity differs 
somewhat from that used by Nelson and Kosterlitz [3] but agrees with Minnhagen 
and Warren [8]. Letting po be the spatial average of p. we define a total superfluid 
current density j" for N vortices located at positions {z"} with circulations { q m }  by 

as well as a superfluid 'momentum' density gSf= mj". 

to Bogoliubov's inequality the conservation equalion 
Looking back at the original proof of the H M W  theorem, we see that in addition 

*+v. j 
d f  

corresponding to the continuous symmetry (in our case a U(1) gauge symmetry) was 
also used. Because -1ogIz- w1/2a i s  the Green function for the Laplace operator in 
two dimensions, we find that V . f r e O .  As such, the H M W  theorem does not take into 
account vortex excitations in the fluid. 
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Since V . j " = O ,  while still satisfying (2), the vortices behave as though they are 
point vortices in an ideal liquid. Treating the vortices as though they were point particles 
in and of themselves, their Lagrangian is 

d i "  
w df 

2" -i 1 qeze -- X 

where 

and 

log x2 for x >  1 
I 0  for x <  1. 

U ( x )  = 

(7)  

The reader is referred to either [9] for a standard hydrodynamical derivation of (7)  
or [lo] for a derivation from the microscopic 4He Lagrangian. eKT is the energy scale 
for the system which we have taken to be po7rh2/(2m). We caution the reader that our 
potential U differs from that used by Kosterlitz, Thouless and Nelson by a factor of 
2. As usual, a hard core cutoff has been introduced at a distance a to prevent any 
infrared divergences in the partition function. 

Taking our generalized coordinate to be i", its canonical momenta is then -iq,z" 
and we see immediately that 2" is linear in the momenta. Consequently, the vortex 
Hamiltonian 7t'" obtained from 2" is simply X. It contains no 'kinetic' piece and is 
purely 'potential'. 

The symmetries of 2" are well known and listed in table 1 (see either [ l l ]  or [12] 
for a somewhat different approach). Corresponding to rotational invariance there is 
the total angular momentum 

N 

I -pohlqmlz" l*  
0 

while invariance under translations gives the total linear momentum 
N N 

P = p , h  1 qaz* F - p,h 1 q,P. (11) 
a 

P has the form of a polarization vector which justifies calling it such. It is also related 
to the total superfluid momentum density g" in the following way. Let 9 be a disk in 

Table I .  Table of the symmetries of the vortex Lagrangian and its conserved charger. 

Conserved 
Symmetry quantity Observable 

Time translation .Y Energy 
invariance 
Space translation P, i Superfluid current/ 
invariance polarization vector 
Rotational invariance I Angular momentum 

Lagrange Physical 
multiplier interpretation 

@ = I / J  Temperature 

E, E External Row/ 
electric field 
Total vorticity/ 
charpe 

Q 
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the complex plane such that 2'' E 9 for all a. Then using the identity (see the appendix) 

which is independent of the size of 9, we find that in rectangular coordinates 

? = - E  jk I g',d2r (13 )  ,. .- 
where E,* is the totally anitsymmetric pseudotensor ( E , ~  = - E ~ , ,  E , ~ =  I ) .  

The grand partition function for the ensemble is then 

%[E3 E l E  1 AN, q ) A ( N  q)ZrvIE, E1 (14) 
conhg 

where 

m 
i d z " n d i "  

( E P +  E P =  E,P,), is the N-vortex partition function and the sum is over all configur- 
ations of the system. g( N, q )  is the multiplicity factor due to the number of identical 
vortices in each configuration while A(N, q )  represents the total fugacity of the system. 
Their exact forms are quite complicated, but fortunately are not needed for our 
purposes. Q and E, are the Lagrange multipliers corresponding to the conserved 
charges I and P, respectively. Physically, Q is interpreted as the total vorticity (angular 
velocity) of the system. Since even in the absence of a net external rotational flow in 
the system there still may be a net vorticity due to that of the vortices themselves, 
Q = Z qm. This is the case we shall always consider. E, is identified as the components 
of a net external non-rotational How or 'eiectric' tieid which may be siowiy varying in 
time. In complex coordinates E = (E,+iE,)/fi .  

First, we note that the grand partition function is a function of the magnitude of 
E, only and not its direction: %[E, E] = %[1El] where 1EI2- E E  = EjE,/2. This is due 
to the rotational invariance of X and I. Second, in the absence of any external field 
whatsoever, (P,)I,,,,, = 0 for all values of Q; once again due to the rotational symmetry 
of E ana i. Such a stare, however, is never reaiized experimentaiiy and, when Q = 0, 
is, as we shall see, extremely unstable. Since in reality there is always some external 
current Row in the system, we will introduce an external Row to the system and look 
once again at the behaviour of (P , )  when Ej+ 0. The system will behave very differently 
depending upon whether or not Q vanishes and we will treat the two cases separately. 

3. The case Q # 0 

Turning our attention to the N-vortex partition function, we complete the square by 
letting 

Because YC is translationally invariant, 
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and it is now straightforward to calculate the average polarization vector 

A D Speliotopoulos and H L Morrison 

( 3 ) = m E j .  

The fluctuation t.= 8 -(e) about this average flow is 

From (13), and using translational invariance in the E, + 0 limit, 

where fi is the total surface area of the film. As usual we define the normal fluid density 
2s 

Using (19) and (20) to calculate p., we immediately see that the system will always 
behave as a normal fluid. There is no superjluid phase when Q # 0. Note also that for 
this case (3)iE,-o = (P,)o and, not surprisingly, rotational symmetry is restored when 
E, + 0. 

4. The case Q = O  

We now sum oniy over those configurations of ihe system for which the net circuiation 
vanishes. The term proportional to I is no longer present in the Boltzmann factor so 
that neither (8) nor (8.A) is trivial to calculate. We can, however, get some notion of 
their behaviour in the static limit by looking at the properties of (SW=-(E,P,). We 
begin by establishing a very important inequality. 

Returning once again to the grand partition function, we scale the coordinates of 
the vortices by ietting w n  = &" so that i dw"  A dw" = iEi2i dz" A ~ T .  Tnen 

~~ ~ 

where D = X  q'. and pKT= l / e K T  is the KT temperature. In obtaining this expression 
we have made use of the identity 

Then 

Since iq- 1 P 1 for all a, D a N and 

(24) 
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Using this inequality and the observation that ( N ) a O  it is straightforward to show 
that ( S a  has the following properties: 

I .  (salEIT"=O, 
2. ( 8 7 t ) ~ O f o r a l l  p a P K T ( T s T T K T ) r € j # O ,  
3. if (SaP)=Oforsomep>p,,(T<T,,), €,#O, then (N)=O there. 
4. if (Sae)>O for some p<pKT (T>  T,,), €,#O, then (N)>O there, 

where for completeness we have included the result obtained in section 2. 

transformation from taking place and the 4He film will behave as a normal fluid. Since 
the low-temperature phase is a superfluid, we will assume that ( N )  # 0 when p > P,T. 
From properties 2 and 3 we find that 

the absefice of any \ionices whaisoevei, the  KM'W theoieiii pie\iefiis 2 

( f ixe) ) ,=  Iii(Sxe)<O ( 2 6 )  

for all p>pKT. A priori there is no reason why this limit will exist. If, however, 
(Sm+ -03, as E,+O, we would then have the unphysicdl result that an infinitesimally 
small external field causes an infinitely large shift in the average energy of the system. 
On physical grounds we conclude that ( S X ) ) ,  must be finite. Moreover, we will find 
that in order to define a normal fluid density we must also require that (fixe) be 
expsE&b!e in 2 Tcy!nr $pries 

We now see that due to the presence of vortices in the low-temperature phase, 
( f iae)~E,~, ,#( f ixe) , , .  Even when the applied field is turned off rotational symmetry 
remains broken so that the low-temperature phase is in a state of broken symmetry. 
Returning for a moment to the definition of the superfluid velocity, we let 4 be the 
phase of $. From the definition of U" and (4), 

F. = 6. -I 

where we have once again set ail v:  to zero. Now perform a global gauge transformation 
$ + exp(iNX)$. Then 6 + 4 + Nx, or, equivalently, z" + exp(iX/Zq, ) z " .  A global gauge 
transformation of the Bose field is the same as a uniform rotation of the vortices. 
breaking rotationai invariance is equivaienr to breaking the U ( i )  gauge symmetry so 
that like superfluidity in three dimensions, superfluidity in two is also characterized 
by the breaking of a U ( l )  gauge symmetry. Furthermore, because (3/)n+(S%?a is simply 
the average energy of the broken symmetry state, the broken symmetry state has less 
energy than the symmetric one (XjlE,-o and is the one favoured energetically. 

For convenience we define R = - p ( S Z ) .  I t  is a function of the external field E, so 

- 

i'nai by expanding in  Taylor series, 

There are no terms in the expansion which contain odd powers of E, since 3 is a 
function of ( E (  only. The coefficient ofeach term in the expansion, although independent 
of E,, is still a function of p and the vortex chemical potentials. Moreover, because 
of (26) the expansion starts with a consfanr ferm below the KT temperature. We can 
now formally solve for the grand partition function in  terms of the applied field 

% [ ( E ( ] =  ( m ) " , e x p ( A ) $  (29)  
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where & is a function of p and the chemical potentials only, while 
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A=--- ' ' J2R I E,E,+HoT 
2 2! JE, JE, 

Note that A+O when Ej+O. We are now in the position to look at the behaviour of 
the correlation functions. 

The average momentum is simply 

JA 
&Ex JE; 

p ( q =  I?,,%+--. 

which diuerges as 1/IEl when Ej+O below TKT. Notice, however, that p(8Z)o=-R, 
is still finite. The fluctuations about this infinite average current in the Ej+O limit is 

J2R I A .  
n Z / P P . \ L =  - -  1;m % ( A .  -?%\+I- 
F ,.,. *," ~~ ..... 

E..-o EIE, \" Ik €,E,/ 2 JE,aE,~,"'* 

Taking the trace of ( 3 2 )  we find that because we are working in two dimensions 

p.=-- 2mpO a€,  J2R JE, I (33) 

We see that p. is finite as long as R is expandable in a Taylor series about E, = 0, 
justifying our ansatz that (SW, exists. Then, using (13), we obtain the following 
expression for the superfluid momentum-momentum correlation function 

where n, = R,IO. 
When n,  if 0 we find that the off-diagonal terms in the superfluid momentum- 

momentum correlation functions are infinite when E, + 0, signifying off-diagonal long 
range order in the static limit. Since the high-temperature phase is a normal fluid, n ,  
must vanish above the transition temperature T, although it is greater than zero below 
it. n, functions as an order parameter for the system. It is straightforward to  show that 
this order parameter must also be independent of p below T,. Calculating the total 
average energy of the system and  using (29), we obtain the following consistency 
equation 

R l a R ,  dA 1 J$ (YC) -- = -- -log( EjEj)  ---7 -. 
P 2 J P  Jp JP (35) 

Now let E,+O. Whether or not (X), is finite in this limit is determined not by how 
the limit is taken, but rather by the expression for YC itself. E is independent of E, 
and, from (30), A + 0 as E, + 0. Because R is finite in the E, + 0 limit, we find that R, 
must be independent of p everywhere except, perhaps, at the transition temperature 
where the grand partition function itself is no longer analytic. The order parameter is 
therefore a step function in T with the discontinuity occurring at T,. It is, however, 
still a function of the chemical potentials of the vortices. 

From property 2 we conclude that TcP TKT. From our inequality ( 2 5 ) ,  we note 
that although it may be well behaved everywhere else, there is singularity in ( N )  when 
T =  TKT. If Tc> T,,, the system will have a singular behaviour before the transition 
temperature, which would be unphysical. On physical grounds, then, we conclude that 
T, = TKT. 
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There is not much more that we can say about the general ensemble. We now turn 
our attention to the KT ensemble. Of course all the results we have obtained so far 
also holds for the KT ensemble with the addition of a few new features. Using the 
form of the grand partition function given in (22) to calculate p2( f ;&)o  directly, we 
find that 

R - 2 1-- (N)KT. 
K T - -  ( La 

The inequality is now exact since D = N for the KT ensemble. Moreover, 

(37) 

where 3 N -(N)KT is the fluctuation in the average number of vortices. It vanishes 
in the static limit for all values of T except, perhaps, at the transition temperature 
TKT. Because there are now only vortices with charge 141 = 1, there is only the one 
fugacity A and, by using (37), we conclude that 

(N)ET is independent of the chemical potential and from ( 3 6 )  we find that for the KT 

ensemble the order parameter n:' is a constanf independent of all thermodynamic 
variables. 

We now let E, vary slowly with time and look at how the average number of vortices 
in the system changes. From (33) and (37) we find that for small E;,  

d(N)KT 1 pKTn d 8  
d t  TKT-T k,  df 

- (39) 

where 

%'e kmE,E, (40) 

is the amount of energy the external source is depositing into the system. Notice that 
(N)KT is coupled only to the normal fluid density and not to the superfluid density. 
Above the transition temperature the external source will decrease the average number 
of vortices while below the transition temperature it will tend to increase it. 

Returiiing to (36), we find that the average density of vortices for the KT ensemble 
p y =  ( N)CT/n in the static limit is 

where Six) is the step function. Consequently, fhere are no vortices in the high- 
temperaturephase, a result which runs contrary to the standard model of the transition 
and with which we shall attempt to reconcile at the end of this paper. Rather, the 
number of vortices is unbounded at T,, and slowly decreases as T is lowered below 
TKT. Because of the attractive force between oppositely charged vortices, this decrease 
is due to the annihilation of a charge q = 1 vortex with a q = -1 vortex. This does nof 
mean, however, that the fluid is quiescent at high temperatures. I n  our previous work 
[IO] we have demonstrated that the excitation spectrum of the 4He film consists of 
two components: one a quasi-particle component corresponding to the phonon gas, 
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and the other a pseudo-particle, vortex gas component. In the constant density limit, 
the vortex gas component completely decouples from the phonon gas so that the 
interaction between the quantized point vortices and the quasi-particle spectrum may 
be neglected to lowest order. This is the regime that we are working in. Consequently, 
there will i n  fact be quasi-particle excitations in the fluid in the high-temperature phase, 
and these excitations may even consist of rotational flows. Our result states that these 
flows may not form ideal, point vortices with integer-valued circulation. 

to create higher charged vortices is much greater than the energy needed to create 
vortices with unit charge, p v s  p:' where pv is the average density of vortices in the 
general ensemble. This observation, combined with the inequality (25), gives an upper 
bound on the vortex density in the general ensemble 

A D Speliotopoulos and H L Morrison 
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as well as n 7 <  n:' (see figure 1). The average number of vortices in the general 
ensemble may decrease faster with temperature than the number of vortices in the KT 

ensemble. How much faster is still an open question, although we can obtain a formal 
expression for it. From (24). we find 

(43) 

where 

is the approximate difference in the rates at which the average number of vortices 
decrease. Note also that because W + 0 as T + 0, ( D)o - (A')" - ( T /  TKT)' where p >. 0. 

t 

Figure 1. Graph of  the density of vortices p y  against 1 far the KT ensemble. The shaded 
region in the graph represents the allowed values that the density of vortices in the general 
ensemble p. may have. Notice ghat there are no vortices whatsoever above the transition 
temperature and the singularity at T = TKT. 
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5. The behaviour a t  T = TKT 

We now turn our attention to the behaviour of the system at the transition temperature 
itself. While before we fixed p # pKT and considered the behaviour of the correlation 
functions as E, + 0, we now fix E, at some small but non-vanishing value and let 
P +pLT ( T +  T i T ) .  Our results in this section holds for both the general ensemble as 
well as the KT ensemble. At the transition temperature the system must be scale 
invariant. Kosterlitz and ihouiess have shown that the relevant scaie for the ensemble 
is the cutoff length a and to emphasize this fact we shall, in this section, denote the 
grand partition function as %[a,  IEI]. Let us now scale a + .$a. Then 

Letting w"=z"/.$, we find that %[ea, IEl]=%[a, f l € l ]  so that scaling a is equivalent 
to scaling the external flow field. Thus, the system must also be invariant under the 
scaling of E, at the transition temperature. 

Returning to (29) and using the definition of the normal fluid density, we write 

log %[a, 1 E 11 = log 2 + 1 log( E,E,) + fmpp.nE,E,  + HOT. (46) 

Leaving the logarithmic term alone for now, we see that the normal fluid density is 
the coefficient o f  a term which has naive scaling dimension 2. As such, we conclude 
that pp. + O  as T +  T i T .  Following Minnhagen and Warren (see note added), we 
define the superfluid density as p. = p o - p n ,  and find that 

n n  
2 

where k ,  is Boltzmann's constant and we have used k,T,,=e,,.  This is the result 
originally obtained by Nelson and Kosterlitz [3] (our p.$ is the number density and not 
the mass density used by Nelson and Kosterlitz, however). Moreover, we find that all 
the higher-order terms in the expansion of R, which are proportional to the higher 
order superfluid momentum correlation functions, must also vanish as T +  Ti,. 

n, is the coefficient of the logarithmic term in (46) which has an anomalous scaling 
dimension. I t  is unclear exactly what, if any, restrictions scale invariance will impose 
upon it. If, however, we take the scaling invariance to also include the logarithm, we 
find that ns(T=  TKT) = O  which substantiates our earlier physical arguments for the 
vanishing of n, above the transition temperature in section 4. 

6. Conclusion 

From the above results we are lead to a somewhat different interpretation of the KP 
superfluid phase transition. Approaching the phase transition from above we see that 
there are no vortices whatsoever above the transition temperature. From the H M W  

theorem the 'He film has no choice but to behave as a normal fluid. As T is lowered 
below the KT temperature, however, the vacuum state becomes unstable and any 
external perturbation of the system causes a gas of vortices to be created. Due to 
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angular momentum conservation, this gas must be neutral and consequently the 4He 
film behaves as a superfluid. The H M W  theorem is circumvented due to the presence 
of vortices in the fluid. As the temperature is lowered further, the average number of 
vortices in the system decreases due to pairwise annihilation of oppositely charged 
vortices until there are no vortices left at T = 0. Approaching the transition temperature 
from below, the increasing temperature creates vortices pairwise in the fluid to preserve 
neutrality. The average separation between vortices now increases with temperature, 
thereby decreasing the likelihood of pair annihilation. This separation, however, is 
bounded above by the finite size of the system while the average number of vortices 
will continue to grow without bound. At the transition temperature itself a massive 
annihilation of the vortices will occur so that no vortices are left above TKT. 

At first glance this seems to be different from the standard model of the phase 
transition which has free vortices above the transition temperature and vortices bound 
in dipole pairs below it. We note, however, that in the KT theory two vortices are 
considered to be bounded when they come within a distance a, the cut-off length, of 
each other. From our point of view they have effectively annihilated each other. What 
Kosterlitz and Thouless interpreted as vortex binding and unbinding may also be 
viewed as vortex annihilation and creation. Our p:'is, in the language of the standard 
model, the density of free vortices in the liquid and long range order is destroyed by 
these vortices when the number of vortices in the system becomes infinite in a finite 
size system. Aside from the requirement that there are no vortices in the high- 
temperature phase, there is little difference between our theory and the KT theory. 

Although we have allowed E, to vary with time, ours is not a complete theory of 
the dynamical phase transition because the vortices have not been coupled to the 
underlying fluid. E, is treated as  an external field and has not been related to any of 
the elementary excitations in the 'He film. The reader is referred to either [13] or [14] 
for the complete description of the dynamical phase transition. 

As we have seen, the magnitude of the external field IEl plays an analogous role 
to the chemical potential for the system. It enters, however, into the grand partition 
much in the same way as the external magnetic field does for the two-dimensional 
king model: as a Lagrange parameter. Identifying IEl as the chemical potential, 
equation (29) shows that when n, > 0 there is a zero of the partition function at IEl= 0. 
This is reminiscent of the Yang-Lee theory of phase transitions in which a phase 
transition occurs when the partition function develops a zero as the complexified 
fugacity z pinches the real axis at L = 1 [15, 161. The crucial difference, of course, is 
that E, is a vector, and not a scalar like the chemical potential. 

A D Spelioropoulos and H L Morrison 

Nore added. There are two different definitions of the superfluid density currently in use in the literature. 
The one used by Nelson and Kosterlitz is 

while the one given by Minnhagen and Warren is 

(%=I-: I', (g"( r )  . g"(0) d'r) (N2)  

where we have used our definition of  R ' ~  against Minnhagen and Warren's (they differ by a factor of p h l m ) .  
Minnhagen and Warren have shown lhat the two definitions are equivalent near TKT. Our definition of 0, 
agrees with Minnhagen and Waren's once the difference of the factor of two in the definitions of the vonex 
Hamiltonian (8)  is taken into account. All three definitions or the superfluid density give the same result at 
TK,, namely (47). 
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Appendix 

Due to the importance of the relationship between the polarization vector and the 
superfluid velocity, we shall establish the identity (12). We begin with a very brief 
discussion ofdifferential forms. The reader is referred to [I71 for acompletedescription. 

The object A in the integration measure i dz A dZ defines a wedge product. Its 
usefulness will be made clear later on. Let f be any function of the coordinates x,. 
I he exterior derivative d j  o f f  is dehned as  _. 

Jf dfe-dx, 
axj 

with the rule dx, A dx, = -dx, A dx,. In evaluating the integral in (12j, we find it much 
more convenient to use polar coordinates and we let z=rexp(iOj .  Then from (AI) ,  
dz=(dr+irdO)exp(iO) so that d z n d i = - 2 i r d r ~ d 0  which is obtained without the 
use of the Jacobian of the transformation. Then 

dz A dZ 

where R is the radius of the disk 9. We have broken the integral up into two pieces 
so as to make use of the expansion 

which holds as long as l z (< 1. Because 

we find that 

and we are done. 
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